SALIU BOLANLE KUDIRAT1*, SALAMI RUKAYAT IBIYEMI1, ALABI ABDULWAHEED AYODEJI1, DADZIE VANESSA OMOTOLA1, AJEWOLE ADEBISI ELIJAH2 & YUSUF-SALIHU BASHIRAT OLAMIDE3
1Department of Microbiology, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
2Department of Biological Sciences, Federal Polytechnic Bida, Nigeria
3Department of Microbiology, Faculty of Pure and Applied Sciences, Kwara State University, P.M.B. 1530, Malete. Nigeria
*Corresponding Author: Saliu, Bolanle Kudirat, saliu.bk@unilorin.edu.ng, +234 80 2309 3294
Received: 07 Nov 2024, Reviewed: 04 Jan 2025, Revised: 11 Jan 2025, Accepted: 15 Jan 2025, Published: 11 Mar 2025
https://doi.org/10.63342/cjbbs2025.543
ABSTRACT
Indigenous fermented milk in most West African countries including Nigeria is produced by spontaneous fermentation which results in products lacking uniformity, predictability, and safety. In this study, lactic acid bacteria (LAB) with antimicrobial properties from indigenous fermented foods were investigated for use as fermenting organisms for the acidification of cow and soy milk products. Twenty-two LAB isolates inhibited test organisms with diameter clear zones ranging from 3.67 to 28.00 mm. Lactobacillus fermentum (pH 4.46, 27.00 mm), L. acidophilus (pH 3.38, 28.00 mm), L. plantarum (pH 4.24, 25.67 mm), and L. coryniformis (pH 4.70, 23.33) with highest acidifying properties and inhibitory zones respectively, significantly impacted the sensory and proximate quality of the milk samples after fermentation. The texture of all the milk samples was altered through the appearance of curds and the beany aroma of soy milk was significantly suppressed. However, there was no significant change in the colour of the fermented milk compared to the original milk samples. Respectively for the cow and soy milk samples, the crude fibre (14%, 21%) and ash contents (27.36%, 56.04%) were depleted due to fermentation, while lipids (11.03%, 7.79%) and proteins (18.28%, 25.48%) were significantly improved. Optima acidification was obtained at 30 °C and 40 °C. The study concluded that the LAB isolated from Nigeria’s indigenous foods has antimicrobial and acidifying properties and can be used to produce quality fermented milk. The study recommends a detailed optimization of the fermentation parameters and a comprehensive analysis of the antimicrobial substances and other metabolites of value that may be produced by the isolated LAB.
Keywords: milk, acidification, antimicrobials, sensory, proximate analysis.
RÉSUMÉ
Le lait fermenté indigène dans la plupart des pays d’Afrique de l’Ouest, y compris le Nigeria, est produit par fermentation spontanée, ce qui donne des produits manquant d’uniformité, de prévisibilité et de sécurité. Dans cette étude, des bactéries lactiques (BL) possédant des propriétés antimicrobiennes provenant d’aliments fermentés indigènes ont été étudiées pour être utilisées comme organismes fermentants pour l’acidification des produits laitiers de vache et de soja. Vingt-deux isolats BL ont inhibé les organismes testés avec des zones claires de diamètre allant de 3,67 à 28,00 mm. Lactobacillus fermentum (pH 4,46, 27,00 mm), L. acidophilus (pH 3,38, 28,00 mm), L. plantarum (pH 4,24, 25,67 mm) et L. coryniformis (pH 4,70, 23,33) avec respectivement les propriétés acidifiantes et les zones inhibitrices les plus élevées, et ont eu un impact significatif sur la qualité sensorielle et immédiate des échantillons de lait après fermentation. La texture de tous les échantillons de lait a été modifiée par l’apparition de caillé et l’arôme de haricots du lait de soja a été considérablement supprimé. Cependant, il n’y a eu aucun changement significatif dans la couleur du lait fermenté par rapport aux échantillons de lait d’origine. Respectivement pour les échantillons de lait de vache et de soja, les teneurs en fibres brutes (14%, 21%) et en cendres (27,36%, 56,04%) ont été réduites suite à la fermentation, tandis que les lipides (11,03%, 7,79%) et les protéines (18,28%, 25,48%) ont été significativement améliorés. Une acidification optimale a été obtenue à 30 °C et 40 °C. L’étude a conclu que les BL isolées des aliments indigènes du Nigéria possèdent des propriétés antimicrobiennes et acidifiantes et peuvent être utilisés pour produire du lait fermenté de qualité. L’étude recommande une optimisation détaillée des paramètres de fermentation et une étude approfondie des substances antimicrobiennes et autres métabolites de valeur qui peuvent être produits par les BL isolées.
Mots clés : lait, acidification, antimicrobiens, sensoriel, analyse nutritionnelle.
REFERENCES
Abdel-Rahman, MA, Tashiro, Y, Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnological Advances, 31(6): 877-902. https://doi.org/10.1016/j.biotechadv.2013.04.002
Abdulrahman, F.A. and Sanmi, E. (2021). Physicochemical properties, proximate composition and total counts of Staphylococcus aureus in nono and yoghurt in Kaduna, Nigeria. Turkish Journal of Agriculture Food Science and Technology, 9(1): 15 – 20. https://doi.org/10.24925/turjaf.v9i1.15-20.3391
ADPI. (2023). Determination of titratable acidity. Analytical Methods. American Dairy Products Institute. https://www.adpi.org/methodsofanalysis/analytical-method-007/
Ajayi, O., Akinrinde, I., and Akinwunmi, O. (2015). Towards the development of shelf-stable ‘iru’ (Parkia biglobosa) condiment bouillon cubes using corn, cassava, and potato starch extracts as binders. Nigerian Food Journal, 33(1): 67-72.
Akabanda, F., Owusu-Kwarteng, J., Tano-Debrah, K., Glover, R.L.K., Nielsen, D.S. and Jespersen, L. (2013). Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiology, 34(2): 277–283. https://doi.org/10.1016/j.fm.2012.09.025
Alakomi, H.L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K. and Helander, I.M. (2000). Lactic acid permeabilizes Gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5): 2001-2005. doi: 10.1128/aem.66.5.2001-2005.2000
Angino, K., Kumari, A., Savitri, M. and Bhalla, T.C. (2015). Antagonistic activities of lactic acid bacteria from fermented foods and beverages of Ladakh against Yersinia enterocolitica in refrigerated meat. Food Science, 13: 26–31. https://dx.doi.org/10.1016/j.fbio.2015.12.004
Ayeni, F.A., Adeniyi, B.A., Ogunbanwo, S.T., Tabisco, R., Paarup, T., Pelaez, C. and Requena T. (2009). Inhibition of uropathogens by LAB isolated from dairy foods and cow’s intestine in western Nigeria. Archives of Microbiology, 191: 639–648. DOI: 10.1007s00203-009-0492-9
Balouri, M., Sadiki, M. and Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Bharti, A. (2019). The growth of Soy-Milk as a Dairy Alternative. Industry Europe, Focus Media Group Ltd. Retrieved 1 September 2024. https://industryeurope.com
Chi, X., Yang, Q., Su, Y., Zhang, J., Sun, B. and Ai, N. (2024). Improvement of rheological and sensory properties of Lactobacillus helveticus fermented milk by prebiotics. Food Chemistry: X, 23: 101679 https://doi.org/10.1016/j.fochx.2024.101679
Cui, Y., Luo, L., Wang, X., Lu, Y., Yi, Y., Shan, Y., Liu, B., Zhou, Y. and Lu, X. (2021). Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Comprehensive Reviews of Food Science and Food Safety, 20(1): 863–899. doi: 10.1111/1541-4337.12658.
De, A., Shrivastav, A., Das, T. and Gaswami, T.K. (2022). Physicochemical and nutritional assessment of soymilk and soymilk products and comparative evaluation of their effects on blood gluco-lipid profile. Applied Food Research, 2(2): 100146 https://doi.org/10.1016/j.afres.2022.100146
Deepika, K., Kumar, S., Upadhyay, S. and Mishra, R. (2017). Preservation and processing of soymilk: A review. International Journal of Food Science and Nutrition, 2(6): 66–70.
Digaitiene, A., Hansen, A.S., Juodeikieme, G., Eidukonite, D. and Josephson, J. (2012). Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. Journal of Applied Microbiology, 112: 732-742 doi: 10.1111/j.1365-2672.2012.05249.x
Du, L., Ro, K.S., Zhang, Y., Tang, Y.J., Li, W., Xie, J. and Wei, D. (2022). Effects of Lactiplantibacillus plantarum X7021 on physicochemical properties, purines, isoflavones and volatile compounds of fermented soymilk. Process Biochemistry, 113: 150–157. https://doi.org/10.1016/j.procbio.2021.12.028
Fonseca, H.C., Duarte, E.R., Souza, L.C., Mariano, E.G., Pires, A.C., Lima, T.S. and Pinto, M.S. (2020). Growth, viability, and post-acidification of Lactobacillus plantarum in bovine transition milk. Revista Mexicana de Ciencias Pecuarias, 11(2): 539-552. https://doi.org/10.22319/rmcp.v11i2.4912
Fukuda, M., Kobayashi M. and Honda Y. (2017). Chapter 6: Functional components and health benefits of fermented soymilk. In: Alexandru Mihai Grumezescu, Alina Maria Holban Eds. Handbook of Food Bioengineering, Soft Chemistry and Food Fermentation, Academic Press, 145 – 178. https://doi.org/10.1016/B978-0-12-811412-4.00006-0
Gambelli, L. (2017). Milk and its sugar-lactose: A picture of evaluation methodologies. Beverages, 3(3): 35; 6 pages. https://doi.org?10.3390/beverages3030035
Goa, T., Beyene, G., Mekonnen, M. and Gorems, K. (2022). Isolation and characterization of lactic acid bacteria from fermented milk produced in Jimma town, Southwest Ethiopia and evaluation of their antimicrobial activity against selected pathogenic bacteria. International Journal of Food Science, 2076021 https://doi.org/10.1155/2022/2076021
Hati, S., Das, S. and Mandal, S. (2019). Technological advancement of functional fermented dairy beverages. Engineering Tools in the Beverage Industry, 3: 101–136. https://doi.org/10.1016/B978-0-12-815258-4.00004-4
Ladokun, O. and Oni, S. (2014). Fermented milk products from different milk types. Food and Nutrition Sciences, 5(13): 1228–1233. doi: 10.4236/fns.2014.513133
Lando, V., Valduga, N.Z. and Moroni, L.S. (2023). Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in formulated dairy products. Biocatalyst and Agricultural Biotechnology, 47: 102605 https://doi.org/10.1016/j.bcab.2023.102605
Meng, J., Wang, J.L., Hao, Y.P., Zhu, M.X. and Wang J. (2023). Effects of Lactobacillus fermentum GD01 fermentation on the nutritional components and flavour substances of three kinds of bean milk. LWT, 184: 115006 https://doi.org/10.1016/j.lwt.2023.115006
Micheni, B., Owaga, E. and Mugeudi, B. (2024). Physicochemical and sensory properties of fermented milk supplemented with sundried African horned melon. Applied Research, 2024: e202400102 https://doi.org/10.1002/appl.202400102
Obi, N., Oshiama, U.E. and Onwuegbuchlam, C. (2022). Proximate and sensory properties of yoghurt produced with LAB isolated from dairy and non-dairy sources. Nigerian Journal of Microbiology 36(2): 6236-6245.
Owusu-Kwarteng J., Akabanda F., Agyei, D. and Jespersen L. (2020). Microbial safety of milk production and fermented dairy products in Africa. Microorganisms 8(5): 752; 24 pages doi: 10.3390/microorganisms8050752
Owusu-Kwarteng J., Akabanda F., Johansen P., Jespersen L., Nielsen D.S. (2017). Nunu, A West African Fermented Yogurt-Like Milk Product. In: Yogurt in Health and Disease Prevention. Shah NP Ed. Elsevier Inc. p. 273-283. https://doi:10.1016/B978-0-12-805134-4.00015-8
Quigley, L., O’Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerald, G.F. and Cotter, P.D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37: 664–698. doi:10.1111/1574-6976.12030
Raji, A.O., Oluwanisola, R.M., Oyebanji, O.M. and Sunmonu, B.A. (2023). Nutrient composition, sensory properties and storage stability of processed Nigerian soy cheese (Beske). Measurement: Food, 10: 9 pages. https://doi.org/10.1016/j.meafoo.2023.100088
Rao, W., Fang, Z., Chen, Z., Wu, J. and Fang X. (2023). Antibacterial mechanism of metabolites of Leuconostoc mesenteriodes against Serratia liquefaciens. LWT 187: 115335. https://doi.org/10.1016/j.lwt.2023.115335
Ren, H. Saliu, E.M., Zentek, J., Boroojeni, F.G. and Vahjen, W. (2019). Screening of host-specific lactic acid bacteria active against E. coli from massive sample pools with a combination of in vitro and ex vivo methods. Frontiers in Microbiology, 10: 13 pages. https://doi.org/10.3389/fmicb.2019.02705
Saliu, B.K., Etim, S.E., Yusuf, H.A., Zakariyah, R.F., Sule, I.O. & Agbabiaka, T.O. (2021). Production of fermented soymilk and its preservation using essential oils from the leaves of Hoslundia opposita. Sri Lankan Journal of Biology, 6 (1): 15-30. http://doi.org/10.4038/sljb.v6i1.50
Surmarna. (2008). Changes of raffinose and stachyose in soy milk fermentation by lactic acid bacteria from local fermented foods of Indonesian. Malaysian Journal of Microbiology, 4(2): 26–34. https://dx.doi.org/10.21161/mjm.12208
Van Winckel, M., Velde, S.V., De Bruyne, R. and Van Biervliet, S. (2011). Clinical practice: Vegetarian infants and child nutrition. European Journal of Pediatrics, 170: 1489 – 1494. doi:10.1007/s00431-011-1547-x
Wang, Y., Wei, Y., Shang, N. and Li, P. (2022) Synergistic inhibition of plantaricin E/F and lactic acid against Aeromonas hydrophilus LPL-1 reveals the potential of Class IIb bacteriocin. Frontiers in Microbiology. 13: 16 pages. https://doi.org/10.3389fmicb.2022.774184
Wang, Y., Wu, J., Lu, M., Zhen, S., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y. and Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9: 19 pages. https://doi.org/10.3389/fbioe.2021.612285