POKAM THUMAMO D. BENJAMIN1,2,*, AMAMBUA COLLINS HENGUI1, GUEMDJOM WABO PRISCA2,3, CEDRIC SEUGNOU NANA2,4 & CECILE INGRID DJUIKOUE2, 5Â
1 Department of Medical Laboratory Science, Faculty of Health Sciences, University of Buea, Buea, CameroonÂ
2 Central African Network for the Integrated Control of Antimicrobial Resistance, Bafoussam, Cameroon
3 Department of Public Health, Faculty of Health Sciences, University of Buea, Buea, CameroonÂ
4 Department of Public Health, Faculty of Health Sciences, Université des Montagnes, Bangangté, Cameroon
5 Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, University of Liège, Liège, BelgiumÂ
*Corresponding contributor: thumamo@yahoo.fr
Received: 01 Apr 2025, Reviewed: 16 May 2025, Revised: 20 May 2025, Accepted: 05 June 2025, Published: 20 June 2025
https://doi.org/10.63342/cjbbs2025.33.015.eng
ABSTRACT
Antimicrobial resistance (AMR) has become an emerging threat worldwide, and developing countries such as Cameroon with poor hygienic and healthcare systems are considered to be at a greater risk of disseminating the resistant bacteria between the human-animal-environment interface. The aim of this study was to determine the epidemiology of antibiotic-resistant Escherichia coli (E. coli) strains isolated from some components of One-Health. A total of 162 samples (cloacal swabs = 54, handwash water =54, and vegetables = 54) were collected from poultry birds, poultry workers, and vegetable farms where poultry feces were used as manure, respectively. E. coli isolation, identification, and antimicrobial susceptibility testing were performed using culturing, biochemical techniques, and the disk diffusion method, respectively. Significance was set at a 5% P-value. The prevalence of E. coli from cloacal swabs, handwash water, and vegetables was 25(46.3%), 14(25.9%), and 10(18.5%), respectively. The prevalence of drug-resistant E. coli to Amoxicillin-Clavulanic Acid (p=0.019), as well as Levofloxacin (p=0.001) and Piperacillin (p<0.0001) was significantly different among the three components. Several factors, including the non-adherence to the veterinarian’s prescription [OR= 1.14; 95% CI (0.20-6.46); p=0.88], were not associated with the distribution of antibiotic-resistant E. coli. The high level and similar patterns of antibiotic susceptibility of E. coli isolated in the study area indicate the possibility of strain transmission within the three components. Accurate intervention to curb the spread of antibiotic-resistant E. coli, as well as strain genotyping to link this transmission amongst the components of One Health is advocated.
Key words: Poultry farms, One Health, E. coli, antimicrobial resistance, Yaoundé.
RESUME
La rĂ©sistance antimicrobienne (RAM) est devenue une menace Ă©mergente Ă l’Ă©chelle mondiale. Les pays en dĂ©veloppement comme le Cameroun, dont les systèmes d’hygiène et de santĂ© sont prĂ©caires, sont considĂ©rĂ©s comme prĂ©sentant un risque accru de dissĂ©mination de bactĂ©ries rĂ©sistantes Ă l’interface homme-animal-environnement. L’objectif de cette Ă©tude Ă©tait de dĂ©terminer l’Ă©pidĂ©miologie des souches d’Escherichia coli rĂ©sistantes aux antibiotiques, isolĂ©es de certains composants d’« Une Santé ». Au total, 162 Ă©chantillons (Ă©couvillons cloacaux = 54, eau issue du lavage des mains = 54 et lĂ©gumes = 54) ont Ă©tĂ© prĂ©levĂ©s respectivement sur des volailles, des ouvriers agricoles et des exploitations maraĂ®chères oĂą les excrĂ©ments de volaille Ă©taient utilisĂ©s comme fumier. L’isolement, l’identification et les tests de sensibilitĂ© aux antimicrobiens d’E. coli ont Ă©tĂ© rĂ©alisĂ©s par culture, par des techniques biochimiques et par la mĂ©thode de diffusion sur disque, respectivement. La significativitĂ© a Ă©tĂ© fixĂ©e Ă une valeur p de 5 %. La prĂ©valence d’E. coli Ă partir d’Ă©couvillons cloacaux, d’eau de lavage des mains et de lĂ©gumes Ă©tait respectivement de 25 (46,3 %), 14 (25,9 %) et 10 (18,5 %). La prĂ©valence d’ E. coli rĂ©sistant aux mĂ©dicaments tels l’Amoxicilline-Acide Clavulanique (p = 0,019), ainsi qu’Ă la LĂ©vofloxacine (p = 0,001) et Ă la PipĂ©racilline (p < 0,0001) Ă©tait significativement diffĂ©rente entre les trois composantes. Plusieurs facteurs dont la non-observance de la prescription vĂ©tĂ©rinaire [OR = 1,14 ; IC Ă 95 % (0,20-6,46) ; p = 0,88], n’Ă©taient pas associĂ©s Ă la distribution d’ E. coli rĂ©sistant aux antibiotiques. Le niveau Ă©levĂ© et les profils similaires de sensibilitĂ© aux antibiotiques des E. coli isolĂ©s dans la zone d’Ă©tude indiquent la possibilitĂ© d’une transmission de la souche au sein des trois composantes. Une intervention ciblĂ©e pour endiguer la propagation des souches d’E. coli rĂ©sistants aux antibiotiques ainsi qu’un gĂ©notypage des souches permettant de relier cette transmission aux composantes de l’approche « Une Santé » sont prĂ©conisĂ©s.
Mots clés : Elevages avicoles, « Une Santé », E. coli, résistance aux antimicrobiens, Yaoundé.
REFERENCESÂ Â Â
Amir MA, Muhammad Riaz MR, Chang YungFu CY, Saeed Akhtar SA, Habibullah Nadeem HN, Zulfiqar Ahmad ZA and Muhammad Nadeem MN (2019). Spread of antibiotic-resistant Escherichia coli from broiler to human populations. Pakistan Journal of Agricultural Sciences 56, 977–983. https://doi.org/10.21162/PAKJAS/19.6873
Antunes P, Novais C, and Peixe L (2020). Food to Humans Bacterial Transmission. Microbial Transmission 2020, 6-26. https://doi.org/10.1128/9781555819743.ch9
Ayukekbong JA, Ntemgwa M and Atabe AN (2017). The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrobial Resistance & Infection Control 6, 47. https://doi.org/10.1186/s13756-017-0208-x
Bashar T, Rahman M, Rabbi FA, Noor R and Rahman MM (2011). Enterotoxin profiling and antibiogram of Escherichia coli isolated from poultry feces in Dhaka District of Bangladesh. Stanford Journal of Microbiology 1, 51-57. https://doi.org/10.3329/sjm.v1i1.9134
Bezerra WGA, da Silva ING, Vasconcelos RH, Machado DN, de Souza Lopes E, Lima SVG, Teixeira RSC, Lima JB, Oliveira FR and Maciel WC (2016). Isolation and antimicrobial resistance of Escherichia coli and Salmonella enterica subsp. enterica (O: 6, 8) in broiler chickens. Acta Scientiae Veterinariae 44, 7-7. https://doi.org/10.22456/1679-9216.80957
Ferri M, Ranucci E, Romagnoli P and Giaccone V (2017). Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition 57, 2857–2876. https://doi.org/10.1080/10408398.2015.1077192
Fletcher S (2015). Understanding the contribution of environmental factors in the spread of antimicrobial resistance. Environ Health Prev Med 20(24), 243-252. https://doi.org/10.1007/s12199-015-0468-0
Hussain A, Shaik S, Ranjan A, Nandanwar N, Tiwari S, Majid M, Baddam R, Qureshi I and Semmler T (2017). Risk of transmission of antimicrobial-resistant Escherichia coli from commercial broiler and free-range retail chicken in India. Frontiers in Microbiology 8, 2120. https://doi.org/10.3389/fmicb.2017.02120
Islam KS, Shiraj-Um-Mahmuda S and Hazzaz-Bin-Kabir M (2016). Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. Journal of Public Health in Developing Countries 2(3), 276–284.
Kennedy D (2013). Time to deal with antibiotics. Science 342, 777. https://doi.org/10.1126/science.1248056
Mandal AK, Talukder S, Hasan MM, Tasmim ST, Parvin MS, Ali MY and Islam MT (2022). Epidemiology and Antimicrobial Resistance of Escherichia coli in Broiler Chickens, Farmworkers, and Farm Sewage in Bangladesh. Vet Med Sci 8(1), 187-199. https://doi.org/10.1002/vms3.664
Marshall BM and Levy SB (2011). Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews 24, 718–733. https://doi.org/10.1128/cmr.00002-11
Matakone M, Founou RC, Founou LL, Dimani BD, Koudoum PL, Fonkoua MC, Boum-II Y, Gonsu H and Noubom M (2024). Multi-drug resistant (MDR) and extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from slaughtered pigs and slaughterhouse workers in Yaoundé, Cameroon. One Health 19, 100885. https://doi.org/10.1016/j.onehlt.2024.100885
McEwen SA and Collignon PJ (2020). Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr 6(2), 67-300. https://doi.org/10.1128/9781555819804.ch25
Moffo F, Mouiche MMM, Djomgang HK, Tombe P, Wade A, Kochivi FL, Dongmo JB, Mbah CK, Mapiefou NP, Mingoas JK and Awah-Ndukum J (2022). Associations between antimicrobial use and antimicrobial resistance of Escherichia coli isolated from poultry litter under field conditions in Cameroon. Preventive Veterinary Medicine 204, 105668. https://doi.org/10.1016/j.prevetmed.2022.105668
Moffo F, Mouiche MMM, Djomgang HK, Tombe P, Wade A, Kochivi FL, Mbah DCK, Mapiefou NP, Ngogang MP and Awah-Ndukum J (2021). Poultry litter contamination by Escherichia coli resistant to critically important antimicrobials for human and animal use and risk for public health in Cameroon. Antibiotics 10(4), 402. https://doi.org/10.3390/antibiotics10040402
One Health Initiative Task Force (2008). One Health: A new professional imperative. Â American Veterinary Medical Association 15 2008, p. 9.
Peter A, Meffeja F and Mfouangoum S (2018). Poultry Production in Cameroon. Germany: Deutsche Gesellschaft fĂĽr Internationale Zusammenarbeit 2018.
Rasheed MU, Thajuddin N, Ahamed P, Teklemariam Z and Jamil K (2014). Antimicrobial drug resistance in strains of Escherichia coli isolated from food sources. Revista do Instituto de Medicina Tropical de São Paulo 56, 341–346. https://doi.org/10.1590/S0036-46652014000400012
Stromberg ZR, Johnson JR, Fairbrother JM, Kilbourne J, Van Goor A, Curtiss R Rd and Mellata M (2017). Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PloS one 12(7), e0180599. https://doi.org/10.1371/journal.pone.0180599
Talukdar PK, Rahman M, Rahman M, Nabi A, Islam Z, Hoque MM, Endtz HP and Islam MA (2013). Antimicrobial resistance, virulence factors and genetic diversity of Escherichia coli isolated from household water supply in Dhaka, Bangladesh. PLoS One 3, 8(4). https://doi.org/10.1371/journal.pone.0061090
The Institute for Health Metrics and Evaluation (2024). The Lancet: more than 39 million deaths from antibiotic-resistant infections estimated between now and 2050, suggests first global analysis, September 16. Available online: https://www.healthdata.org/news-events/newsroom/news-releases/lancet-more-39-million-deaths-antibiotic-resistant-infections (Accessed on 12 October, 2024)
Vidaver AK 2002. Uses of antimicrobials in plant agriculture. clinical infectious diseases 34(3), S107-S110. https://doi.org/10.1086/340247