Status of domestic anti-mosquito control tools against resistant Anopheles gambiae s.l. and Culex mosquitoes from the city of Kribi, South Cameroon

EKOKO WOLFGANG E.*1,2, DOUMBE-BELISSE P.L.2, MANDENG S.E. 2,3, TOTO J.C.2, BAHEBEGUE SAMUEL2 and AWONO-AMBENE H.P.2

1 Higher Teacher Training College, Department of Biology, University of Bamenda, P.O. Box 39, Bambili, Cameroon

2 Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), P.O Box 288 Yaoundé, Cameroun

3 Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon

* Corresponding author: ewolfgang388@gmail.com

Received: 21 Jan 2025, Reviewed: 15 Mar 2025, Revised: 09 Apr 2025, Accepted: 14 Apr 2025, Published: 08 May 2025

https://doi.org/10.63342/cjbbs2025.33.02 

DOWNLOAD PDF HERE

ABSTRACT

Communities living in the tropics use insecticide products to prevent or control mosquito nuisance in general. In Cameroon, these products are used at home without evidence of their efficacy against targeted mosquito populations. In this paper, we present a sample of anti-mosquito tools used by households in the city of Kribi, and their efficacy versus local Anopheles and Culex mosquitoes. The study protocol included: i) a survey in 500 randomly selected households using a questionnaire; ii) mosquito larvae and pupae collections in breeding sites and rearing; iii) WHO cone and susceptibility bioassays were conducted, respectively, using reared An. gambiae s.l. and Culex mosquitoes; and iv) molecular identification of members of the An. gambiae complex via PCR. The household survey revealed that long-lasting insecticidal nets (LLINs) (89%), insecticide aerosols (51.5%), or insecticide coils (35.3%) were the most used, as anti-mosquito tools. The aerosols provided optimal efficacy against An. gambiae s.l. and Culex mosquitoes with 98.6% and 100% mortality, respectively. Coils showed minimal efficacy (78.7%) to no efficacy (27.1%), respectively, against Anopheles and Culex mosquitoes, and LLINs showed no efficacy (25.6%) against Anopheles mosquitoes (P˂˂0,005). An. gambiae and Culex mosquitoes equally showed resistance to deltamethrin (81.7% and 78.5%, respectively) and permethrin (34.3% and 27.1 respectively). Bioassays conducted with the insecticide bendiocarb demonstrated that An. gambiae s.l. was fully susceptible, achieving a mortality rate of 100%. These findings highlight the challenges of individual anti-mosquito control measures in Kribi thus, there is a need for an integrated mosquito control approach involving effective household anti-mosquito tools to complement the use of LLINs, in the context of increasing insecticide resistance in natural mosquito populations.

Key words: Efficacy, anti-mosquito tools, insecticide resistance, mosquitoes, Kribi.

RÉSUMÉ

Les communautés vivant sous les tropiques utilisent des produits insecticides pour prévenir ou contrôler la nuisance des moustiques en général. Au Cameroun, ces produits sont utilisés à domicile sans que leur efficacité contre les populations de moustiques ciblées ne soit démontrée. Dans cet article, nous présentons un échantillon d’outils anti-moustiques utilisés par les ménages dans la ville de Kribi, et leur efficacité contre les moustiques locaux Anopheles et Culex. Le protocole de l’étude comprenait : i) une enquête dans 500 ménages sélectionnés au hasard à l’aide d’un questionnaire ; ii) des collectes de larves et de nymphes de moustiques dans des sites de reproduction et d’élevage ; iii) des essais biologiques de cône et de sensibilité de l’OMS ont été menés, respectivement, en utilisant des moustiques An. gambiae s.l. et Culex élevés ; et iv) l’identification moléculaire des membres du complexe An. gambiae via la PCR. L’enquête auprès des ménages a révélé que les moustiquaires imprégnées d’insecticide de longue durée (MIILD) (89%), les aérosols d’insecticide (51,5%) ou les serpentins d’insecticide (35,3%) étaient les outils anti-moustiques les plus utilisés. Les aérosols ont fourni une efficacité optimale contre An. gambiae s.l. et les moustiques Culex avec 98.6% et 100% de mortalité respectivement. Les serpentins ont montré une efficacité minimale (78,7 %) à nulle (27,1 %), respectivement, contre les moustiques Anopheles et Culex, et les MILD n’ont montré aucune efficacité (25,6 %) contre les moustiques Anopheles (P˂˂0,005). Les moustiques An. gambiae et Culex ont également montré une résistance à la deltaméthrine (81,7 % et 78,5 %, respectivement) et à la perméthrine (34,3 % et 27,1 respectivement). Les bioessais réalisés avec l’insecticide bendiocarbe ont montré qu’An. gambiae s.l. était totalement sensible, atteignant un taux de mortalité de 100 %. Ces résultats soulignent les défis des mesures individuelles de lutte contre les moustiques à Kribi. Ainsi, il y a un besoin pour une approche intégrée de lutte contre les moustiques impliquant des outils efficaces de lutte contre les moustiques dans les ménages pour compléter l’utilisation des MILD, dans le contexte d’une résistance croissante aux insecticides dans les populations naturelles de moustiques.

Mots clés : Efficacité, outils anti-moustiques, résistance aux insecticides, moustiques, Kribi.

REFERENCES

Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M (2012). Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis 18(7), 1101–1106. doi: 10.3201/eid1807.120218.

Bigoga J D, Manga L, Titanji V P K, Coetzee M & Leke R G F (2007). Malaria vectors and transmission dynamics in coastal south-western Cameroon. Malar J 6, 5. https://doi.org/10.1186/1475-2875-6-5.

Bobanga T, Ayieko W, Zanga M, Umesumbu S, Landela A, Fataki O, Mandoko A S, Tshibamba J, Nyabola L (2013). Field efficacy and acceptability of PermaNet(R) 3.0 and OlysetNet(R) in Kinshasa, Democratic Republic of the Congo. Journal of Vector Borne Diseases 50(3), 206-214.

Chareonviriyaphap T, Rongnoparut P, Juntarumporn P (2002). Selection for pyrethroid resistance in a colony of Anopheles minimus species A, malaria vector in Thailand. J Vector Ecol 27, 222–9. PMID:12546458.

Collins F H, Mendez M A, Razmussen M O, Mehaffey P C, Besansky N J, Finnerty V A (1987). Ribosomal RNA gene probe differentiates member species of Anopheles gambiae complex. Am J Trop Med Hyg 37, 37–41.

Dabiré R K, Diabate A, Baldet T, Pare-Toe L, Guiguemde R T, Ouedraogo J B, Skovmand O (2006). Personal protection of long-lasting insecticide-treated nets in areas of Anopheles gambiae s.s. resistance to pyrethroids. Malar J 5, 12. https://doi.org/10.1186/1475-2875-5-12.

Desfontaines M, Gelas H, Cabon H, Goghomu A, Kouka-Bemba D, Carnevale P (1990). Evaluation des pratiques et des coûts de lutte antivectorielle à l’échelon familial en Afrique Centrale, Ia Ville de Douala (Cameroun). Ann Soc Belg Med Trop 70, 137–44.

Etang J, Chouaibou M, Toto JC, Faye O, Manga L, Same-Ekobo A, Awono Ambene P & Simard F (2007). A preliminary test of the protective efficacy of permethrin-treated bed nets in an area of Anopheles gambiae metabolic resistance to pyrethroids in north Cameroon. Trans RoySoc Trop Med Hyg 881–884. https://doi.org/10.1016/j.trstmh.2007.05.012.

Fanello C, Santolamazza F, & Della Torré A (2002). Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Medical and Veterinary Entomology 16, 461-464. https://doi.org/10.1046/j.1365-2915.2002.00393.

Gillies M T & De Meillon B A (1968). The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). 2nd Edn. South African Institute for Medical Research Johannesburg 54, 131-132.

Gillies M T & Coetzee M (1987). A supplement to the Anophelinae of Africa South of the Sahara (Afro-tropical region). South African Institute for Medical Research Johannesburg 55, 78-143.

Hawley W A, Phillips-Howard P A, Kuile F O T, Terlouw D J, Vulule J M (2003). Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in Western Kenya. Am J Trop Med Hyg 68, 121-7.

Irish S, N’Guessan R, Boko P, Metonnou C, Odjo A, Akogbeto M, Rowland M (2008). Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study. Parasites Vectors 1, 17. https://doi.org/10.1186/1756-3305-1-17.

Jamison Dean T (2006). Disease control priorities in developing countries. 2nd edition. New York: Oxford University Press eISBN: 0-8213-6180-5, 417- 463. ncbi.nlm.nih.gov.

Khadri M S, Kwok K L, Noor M I & Lee H L (2009). Efficacy of commercial household insecticide aerosol sprays against Aedes aegypti (linn.) Under simulated field conditions. Southeast Asian J Trop Med Public Health 40,6.

Killeen G F, Tami A, Kihonda J, Okumu F O, Kotas M E, Grundmann H, Kasigudi N, Ngonyani H, Mayagaya V, Nathan R, Abdulla S, Charlwood J D, Smith T A & Lengeler C (2007). Cost-sharing strategies combining targeted public subsidies with private-sector delivery achieve high bednet coverage and reduced malaria transmission in Kilombero Valley, southern Tanzania. BMC Infect Dis 7,121. https://doi.org/10.1186/1471-2334-7-121.

Le Menach A S, Takala F E, McKenzie A, Perisse A, Harris A, Flahault & Smith D L (2007). An elaborated feeding cycle model for reductions in vectorial capacity of night biting mosquitoes by insecticide-treated nets. Malar J 6, 10. https://doi.org/10.1186/1475-2875-6-10.

Lee H L & Khadri M S. (1997). Effect of household aerosol on mosquitoes – preliminary observations. Trop Biomed Vol. 14, No. 1/2, 117-119.

Lengeler C (1998). Insecticide-treated bed nets and curtains for malaria control. The Cochrane Library Issue 3, Oxford, UK, Update Software.

Lindsay S W, Adiamah J H, Miller J E & Armstrong J R M (1991). Pyrethroid-treated bed net effects on mosquitoes of the Anopheles gambiae complex in the Gambia. Medical and Veterinary Entomology 5, 477–483. https://doi.org/10.1111/j.1365-2915.1991.tb00576.

Lines J D, Myamba J & Curtis C F (1987). Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania. Med Vet Entomol 1(1), 37-51. https://doi.org/10.1111/j.1365-2915.1987.tb00321.

Manga L, Robert V, Carnevale P (1995). Efficacité des serpentins et des diffuseurs en plaque dans la protection contre les vecteurs du paludisme au Cameroun. Cah Santé : Cahiers d’Etudes et de Recherches Francophones, 5 (2), 85-88. ISSN 1157-5999.

Maxwell C A, Msuya E, Sudi M, Njunwa K J, Carneiro (2002). Effect of community-wide use of insecticide-treated nets for 3–4 years on malarial morbidity in Tanzania. Trop. Med. Int. Health 7, 1003–8. https://doi.org/10.1046/j.1365-3156.2002.00966.

Mbida A M, Etang J, Ntonga P, Talipouo A, Awono-Ambene P, Oke-Agbo F, Eboumbou C, Akogbéto M, Osse R, Lehman G, Ekoko W, Binyang J, Tagne D, Tchoffo R, Dongmo A & Mimpfoundi R (2016). Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary, Littoral-Cameroon. J. Entomol. Zool. Stud. JEZS 105, 105–110.

Ndo C, Menze-Djantion B, Antonio- Nkondjio C (2011). Awareness, attitudes and prevention of malaria in the cities of Douala and Yaounde (Cameroon). Parasites Vectors 4, 181. https://doi.org/10.1186/1756-3305-4-181.

N’Guessan R, Corbel V, Akogbeto M, Rowland M (2007). Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13, 199-206. doi: 10.3201/eid1302.060631. PMID: 17479880; PMCID: PMC2725864.

Norris D E (2011). Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malar J 10, 254.

Norris L C, Wang C H (1993). Application of dosage technology on insecticides for household use. The Bulletin of Environmental Health 1, 23-37.

Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbé C, Mimpfoundi R, Awono-Ambene HP, Simard F (2009). Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. Biology Molecular Cellular Infect Diseases 9,163. https://doi.org/10.1186/1471-2334-9-163.

Ochomo E O, Bayoh N M, Walker E D, Abongo B O, Ombok M O, Ouma C, Githeko A K, Vulule J, Yan G, Gimnig J E (2013). The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J 12, 368. https://doi.org/10.1186/1475-2875-12-368.

Ogoma B S, Moore S J & Maia F M (2012). A systematic review of mosquito coils and passive emanators: defining recommendations for spatial repellency testing methodologies. Parasites and Vectors 5, 287.

Okia M, Ndyomugyenyi R, Kirunda J, Byaruhanga A, Adibaku S, Lwamafa D K, Kironde F (2013). Bioefficacy of long-lasting insecticidal nets against pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda. Parasit Vectors 6, 130. https://doi.org/10.1186/1756-3305-6-130.

Padonou G G, Sezonlin M, Gbedjissi G L, Ayi I, Azondekon R, Djenontin A, Bangana S, Oussou O, Yadouleton A, Boakye D, Akogbeto M (2011). Biology of Anopheles gambiae and insecticide resistance: Entomological study for a large-scale of indoor residual spraying in South East Benin. J Parasitol Vector Biol, 3(4), 59–68.   https://doi.org/10.5897/JPVB2024.0454.

Phillips-Howard P A, Nahlan B L, Kolczak M S, Hightower A W, Ter Kuile F O (2003). Efficacy of Permethrin-Treated Bed Nets in the Prevention of Mortality in Young Children in an Area of High Perennial Malaria Transmission in Western Kenya. The American Journal of Tropical Medicine and Hygiene 68 (Suppl 4), 23-29.

Service M W (1993). Mosquito ecology, field sampling methods vector biology and control. 2nd ed. Liverpool. Liverpool School of Tropical Medicine. https://doi.org/10.1007/978-94-011-1554-4_5.

Soleimani-Ahmadi M, Vatandoost H, Shaeghi M, Raeisi A, Abedi F, Eshraghian M R, Madani A, Safari R, Oshaghi M A, Abtahi M, Hajjaran H (2012). Field evaluation of permethrin long-lasting insecticide-treated nets (Olyset (R)) for malaria control in an endemic area, southeast of Iran. Acta tropica 123, 146-153. https://doi.org/10.1016/j.actatropica.2012.04.004.

WHO (2005). Guidelines for laboratory and field testing of long‑lasting insecticidal mosquito nets. http://www.who.int/publications/i/item/9789241505277.

WHO (2016). Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. https://apps.who.int/iris/bitstream/10665/250677/1/9789241511575-eng.pdf.

WHO (2023). World malaria report 2023. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023.

WHO (2017). World Health Organization Global Vector Control Response 2017. https://mesamalaria.org/resource-hub/global-vector-control-response-2017-2030.

Yap H H, Lee C Y, Chong N L, Yahaya A M, Baba R, Awang A H (1996). Performance of mosquito coils containing transfluthrin against Culex quinquefasciatus (Say) in an urban squatter environment. Trop Biomed I 3. Vol. 13 No. 1, 101-103.

Yap H H, Tan H l, Yahaya A M, Baba R, Loh P Y, Chong N L (1990). Field efficacy of mosquito coil formulations containing o-allethrin and o-transallethrin against indoor mosquitoes, especially Culex quinquefasciatus Say. Southeast Asian J Trop Med Public Health 2l, 558-563.

Yewhalaw D, Asale A, Tushune K, Getachew Y, Duchateau L, Speybroeck N (2012). Bio-efficacy of selected long-lasting insecticidal nets against pyrethroid-resistant Anopheles arabiensis from South-Western Ethiopia. Parasit Vectors 5, 159. 21(4):558-563. PMID: 2098916.

Zaim M, Jambulingam P (2004). Global insecticide use for vector-borne disease control. WHO/CDS/ WHOPES /GCDPP /2004. 9.