Vegetable oils influence the persistence of entomopathogenic fungi isolates Beauveria bassiana and Metarhizium anisopliae

HERMINE CLAUDINE MAHOT1*, GERTRUDE MEMBANG3, RAYMOND JOSEPH MAHOB2, DANIELLE CHRISTELLE TINAK EKOM1, VICTORINE LOMBEKO OBE TOMO1, LEILA BAGNY BEILHE4, WAYNE JIANG5 and RACHID HANNA3,6

1Institute of Agricultural Research for Development (IRAD), P.O. 2067, Yaoundé, Cameroon

2Faculty of Science, University of Yaoundé I, P.O. 812, Yaoundé, Cameroon

3International Institute of Tropical Agriculture (IITA), BP 2008, Yaoundé-Messa, Cameroon

4CIRAD, UPR Bioagresseurs, Montpellier, France

5Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA

6Center for Tropical Research, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095, USA

*Corresponding author:  mahotclaudine@yahoo.fr

Received: 15 Feb 2025, Reviewed: 26 Mar 2025, Revised: 13 Apr 2025, Accepted: 26 Apr 2025, Published: 06 June 2025

https://doi.org/10.63342/cjbbs2025.33.006.eng

DOWNLOAD PDF HERE

ABSTRACT

The microbial biocontrol agents Beauveria bassiana (B. bassiana) and Metarhizium anisopliae (M. anisopliae) are highly effective in controlling various insect pests. However, their effectiveness often depends on biopesticide formulation, which could be affected by unfavourable environmental conditions. This study aimed to determine the compatibility of eight vegetable oils derived from raw palm, refined palm, sunflower, cotton, soybean, groundnut, neem, and canola in formulations of B. bassiana and M. anisopliae. This compatibility of oils with fungi was investigated by measuring fungal hyphal growth, conidial yield, fungal biomass, and conidial viability. The results showed a significant inhibition of B. bassiana growth in neem (2.08%) and raw palm oils (0.52%) and M. anisopliae in neem oil (0.28%). Conidia yield was high in the soybean (29.3 x 106 conidia/mL), groundnut (27.2 x 106 conidia/mL) and refined palm (23.83 x 106 conidia/mL) oils as well as vegetative growth for B. bassiana, while conidiogenesis of both fungal species was highest in soybean oil (29.3 x 106 conidia/mL and 44.4 x 106 conidia/mL for B. bassiana and M. anisopliae respectively). Fungal viability varied considerably, with the highest density of viable propagules obtained in Potato Dextrose Agar (PDA) culture media amended by sunflower oil for B. bassiana (43.2 x 104 viable propagules/ml) and in raw palm oil for M. anisopliae (97.4 x 104 viable propagules/ml). Taking these four parameters into account, it was concluded that the compatibility or toxicity of the oils to the two fungal species was mixed. The results of this study were relevant to the formulation of biopesticides based on effective strains of the two fungal species and constituted an essential component for this research program aimed at formulating biopesticides and testing their pathogenicity against insect pests under field conditions.

Keywords: Vegetable oil, Cameroonian indigenous isolates, entomopathogens, compatibility, biopesticide.

RÉSUMÉ

Les agents microbiens de biocontrôle Beauveria bassiana (B. bassiana) et Metarhizium anisopliae (M. anisopliae) se sont révélés très efficaces pour lutter contre divers insectes nuisibles. Cependant, leur efficacité dépend souvent de la formulation du biopesticide, qui peut être affectée par des conditions environnementales défavorables. Cette étude visait à déterminer la compatibilité de huit huiles végétales dérivées (huile de palme brute, de palme raffinée, du tournesol, du coton, du soja, de l’arachide, du neem et du canola) dans les formulations à base de B. bassiana et de M. anisopliae. Cette compatibilité des huiles avec les champignons a été étudiée en mesurant la croissance des hyphes fongiques, la production de conidies, la biomasse fongique et la viabilité des conidies. Les résultats ont montré une inhibition significative de la croissance de B. bassiana dans les huiles de neem (2,08%) et de palme brute (0,52%) et de M. anisopliae dans l’huile de neem (0,28%). La production de conidies était élevée dans les huiles de soja (27,2 x 106 conidies/mL), d’arachide (23,83 x 106 conidies/mL) et de palme raffinée, de même que la croissance végétative de B. bassiana, tandis que la conidiogenèse des deux espèces fongiques était plus élevée dans l’huile de soja (29,3 x 106 conidies/mL et 44,4 x 106 conidies/mL for B. bassiana and M. anisopliae respectivement). La viabilité fongique a considérablement varié, la densité la plus élevée de propagules viables étant obtenue dans le milieu de culture PDA (Pomme de terre Dextrose Agar) amendé par l’huile de tournesol pour B. bassiana (43,2 x 104 propagules viables /ml) et par l’huile de palme brute pour M. anisopliae (97,4 x 104 propagules viables /ml). En tenant compte de ces quatre paramètres, la compatibilité ou la toxicité des huiles à l’égard des deux espèces fongiques est restée mitigée. Les résultats de cette étude semblent pertinents pour la formulation de biopesticides à base de ces souches efficaces des deux espèces fongiques et constitueraient un élément essentiel pour les programmes de recherche visant à formuler des biopesticides et à tester leur pathogénicité vis-à-vis des insectes nuisibles dans des conditions de terrain.

Mots-clés: Huile végétale, isolats camerounais endogènes, entomopathogènes, compatibilité, biopesticides.

REFERENCES

Alves S B (1998). Fungos entomopatogênicos. In: Alves S B (Ed.), Controle microbiano de insetos, FEALQ / USP, pp 289–382.

Alves S B, Moino Júnior A and  Almeida J E M (1998). Produtos fitossanitários e entomopatógenos. In: Alves S B (Ed.), Controle microbiano de insetos, FEALQ / USP, pp 217–238.

Batta Y A, Rahman M, Powis K, Baker G and Schmidt O (2011). Formulation and application of the entomopathogenic fungus: Zoophthora radicans (Brefeld) Batko (Zygomycetes: Entomophthorales). Journal of Applied Microbiology 110(3), 831–839. https://doi.org/10.1111/j.1365-2672.2011.04939.x.

Behle R W (2006). Importance of direct spray and spray residue contact for infection of trichoplusia ni larvae by field applications of Beauveria bassiana. Journal of Economic Entomology 99(4), 1120–1128. https://doi.org/10.1093/jee/99.4.1120.

Bharti K, Joshi N, Khosla S and Kaur R (2023). Compatibility of entomopathogenic fungus Metarhizium rileyi with biorationals. Indian Journal of Entomology, 225–228. https://doi.org/10.55446/IJE.2022.801.

Boruah S, Dutta P, Puzari K C and Hazarika G N (2015). Liquid bioformulation of Metarhizium anisopliae is effective for the management of cow pea mosaic disease. International Journal of Applied Biology and Pharmaceutical Technology 6(1), 179-185.

Campbell C L and Madden L V (1990). Introduction to Plant Disease Epidemiology. New York, NY, USA (Ed.), John Wiley and Sons, 532 p.

ChaiChing H, Islam M T, Ibrahim Y, Tan Yee H and Omar D (2014). Evaluation of conidial viability of entomopathogenic fungi as influenced by temperature and additive. International Journal of Agriculture and Biology 16(1), 146‒152.

Depieri R A, Martinez S S and Menezes J R A O (2005). Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology 34(4), 601–606.

Ferdes M, Al Juhaimi F, Özcan M M and Ghafoor K (2017). Inhibitory effect of some plant essential oils on growth of Aspergillus niger, Aspergillus oryzae, Mucor pusillus and Fusarium oxysporum. South African Journal of Botany 113, 457–460. https://doi.org/10.1016/j.sajb.2017.09.020.

Gebremariam A, Chekol Y and  Assefa F (2021). Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 7(5), e07091. https://doi.org/10.1016/j.heliyon.2021.e07091.

Harith-Fadzilah N, Abd Ghani I and Hassan M (2021). Omics-based approach in characterising mechanisms of entomopathogenic fungi pathogenicity: A case example of Beauveria bassiana. Journal of King Saud University – Science 33(2), 101332. https://doi.org/10.1016/j.jksus.2020.101332.

Hendricks K E. Christman M C and Roberts P D (2017). A statistical evaluation of methods of in-vitro growth assessment for Phyllosticta citricarpa: average colony diameter vs. area. PLOS ONE 12(1), e0170755. https://doi.org/10.1371/journal.pone.0170755.

Hirose E, Neves P M O J, Zequi J A C, Martins L H, Peralta C H and Moino Jr A (2001). Effect of biofertilizers and neem oil on the entomopathogenic fungi Beauveria bassiana (Bals.) Vuill. And Metarhizium anisopliae (Metsch.) Sorok. Brazilian Archives of Biology and Technology 44, 419–423. https://doi.org/10.1590/S1516-89132001000400013.

Hofer A, Herwig C and Spadiut O (2018). Lecithin is the key material attribute in soy bean oil affecting filamentous bioprocesses. AMB Express 8(1), 90. https://doi.org/10.1186/s13568-018-0625-0

Hong T D, Edgington S, Ellis R H, de Muro M A and Moore D (2005). Saturated salt solutions for humidity control and the survival of dry powder and oil formulations of Beauveria bassiana conidia. Journal of Invertebrate Pathology 89(2), 136–143. https://doi.org/10.1016/j.jip.2005.03.007.

Inglis D, Jaronski S T, Wraight S P, Beattie A, Watson D, Stevens M and Rae D (2002). Use of spray oils with entomopathogens. In: Beattie A, Watson D, Steven M, Rae D & Spooner-Hart R. (Eds.), Spray Oils Beyond 2000. Sustainable Pest and Disease Management, pp302–312.

Inglis G D, Enkerli J and Goettel M S (2012). Laboratory techniques used for entomopathogenic fungi: Hypocreales. In: Lacey L A (Ed.), Manual of Techniques in Invertebrate Pathology (Second Edition). Academic Press, pp 189–253. https://doi.org/10.1016/B978-0-12-386899-2.00007-5.

Islam Md T, Olleka A and Ren S (2010). Influence of neem on susceptibility of Beauveria bassiana and investigation of their combined efficacy against sweetpotato whitefly, Bemisia tabaci on eggplant. Pesticide Biochemistry and Physiology 98(1), 45–49. https://doi.org/10.1016/j.pestbp.2010.04.010.

Jiang W, Sandahl J, Dubois J, Flavin M, Reddy S, Neigh A, Matumba L and Gore A (2023). Collection of data on pesticides in maize and tomato in africa: protocol for africa pesticide residue survey study. Bulletin of Environmental Contamination and Toxicology 110(2), 45. https://doi.org/10.1007/s00128-023-03692-x.

Liu W (2012). Compatibility of essential oils with the biocontrol fungus, Beauveria bassiana. Master’s Thesis, University of Tennessee, Knoxville, Trace: Tennessee Research and Creative Exchange, pp: 19-37.

Mahot H C, Membang G, Hanna R, Begoude B A D, Beilhe L B and Bilong B C F (2019). Laboratory assessment of virulence of cameroonian isolates of Beauveria bassiana and Metarhizium anisopliae against mirid bugs Sahlbergella singularis Haglund (Hemiptera: Miridae). African Entomology 27(1), 86–96. https://doi.org/10.4001/003.027.0086.

Mathulwe L L, Malan A P and Stokwe N F (2023). Formulation of Metarhizium pinghaense and Metarhizium robertsii and the infection potential of the formulations against Pseudococcus viburni (Hemiptera: Pseudococcidae) after storage. African Entomology 31. https://doi.org/10.17159/2254-8854/2023/a12814.

Membang G (2013). Pathogenicité des champignons entomopathogènes Beauveria bassiana et Metarhizium anisopliae contre le charançon du bananier Cosmopolites sordidus. Master’s thesis, University of Yaounde 1, Cameroon 163p.

Membang G, Ambang Z, Mahot H C, Kuate A F, Fiaboe K K M and Hanna R (2020). Cosmopolites sordidus (Germar) susceptibility to indigenous Cameroonian Beauveria bassiana (Bals.) Vuill. And Metarhizium anisopliae (Metsch.) isolates. Journal of Applied Entomology 144(6), 468–480. https:// DOI: 10.1111/jen.12757.

Meyling N V (2007). Methods for isolation of entomopathogenic fungi from the soil environment. In: Meyling N V (Ed.), Manual for isolation of soil borne entomopathogenic fungi. Copenhagen, Denmark: University of Copenhagen. https://www.researchga te.net/publication/315827966 pp 1-18.

Mola F L and Afkari R (2012). Effects of different vegetable oils formulations on temperature tolerance and storage duration of Beauveria bassiana conidia. African Journal of Microbiology Research 6(22), 4707–4711. https://doi.org/10.5897/AJMR11.1372.

Moore D and Prior C (1993). The potential of mycoinsecticides. Biocontrol News and Information 14(2), 31–40.

Negrete González D, Ávalos Chávez M A, Lezama Gutiérrez R, Chan Cupul W, Molina Ochoa J and Galindo Velasco, E. (2018). Suitability of Cordyceps bassiana and Metarhizium anisopliae for biological control of Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) in an organic Mexican banana plantation: laboratory and field trials. Journal of Plant Diseases and Protection 125(1), 73–81. https://doi.org/10.1007/s41348-017-0126-4.

Otgonjargal K, Purevjargal G, Enkhbold N and Battur B (2015). Optimum and tolerance pH range, optimal temperature of the local strain Beauveria bassiana-g07. International Journal of Agriculture Innovations and Research 4(3), 578–580.

Paula A R, Ribeiro A, Lemos F J A, Silva C P and Samuels R I (2019). Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasites and Vectors 12(1), 163. https://doi.org/10.1186/s13071-019-3415-x.

Quintela E D and McCoy C W (1998). Synergistic Effect of Imidacloprid and Two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. Journal of Economic Entomology 91(1), 110–122. https://doi.org/10.1093/jee/91.1.110.

Rivera-Malo A (1993). Estudio sobre la compatibilidad del hongo Beauveria bassiana (Bals.) Vuill. con formulaciones comerciales de fungicidas e insecticidas. Revista Colombiana de Entomología 19(4), 151–158.

Rocha I U, Bitencourt R de O B Freitas A de M, Moreira H V S, Magalhães K L A, Souza B A, Golo P S, Chaves D S A, Bittencourt V R E P and Angelo I C (2024). Exploiting the combination of entomopathogenic fungi and Illicium verum essential oil against Aedes aegypti larvae. Biological Control 193, 105526. https://doi.org/10.1016/j.biocontrol.2024.105526.

Senthamizhlselvan P, Alice J, Sujeetha R P and Jeyalakshmi C (2010). Growth, sporulation and biomass production of native entomopathogenic fungal isolates on a suitable medium. Journal of Biopesticides 03(02), 466–469. https://doi.org/10.57182/jbiopestic.3.2.466-469.

Umaru F F and Simarani K (2022). Efficacy of Entomopathogenic Fungal formulations against Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae) and their extracellular enzymatic activities. Toxins 14(9). https://doi.org/10.3390/toxins14090584.

Visalakshy P N G, Krishnamoorthy A and Kumar A M (2006). Compatibility of plant oils and additives with Paecilomyces farinosus, a potential entomopathogenic fungus. Journal of Food, Agriculture & Environment 4(1), 333-335.