In vitro anthelminthic activities of Cucumis melo seeds against egg hatching, larval migration, and adult stage of Haemonchus contortus

DJAFSIA BOURSOU1*, KALMOBE JUSTIN2, ADAMOU MOÏSE1, MASSABE MBAPPE D. G.3, ABESSOLO ABESSOLO H.1 and NDJONKA DIEUDONNÉ3 

1 Department of Microbiology, Parasitology, Hematology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Garoua, Po Box 317, Garoua, Cameroon. 

2 Department of Parasitology and Parasitic Pathology, School of Veterinary Medicine and Sciences, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon. 

3 Department of Biological Sciences, Faculty of Science, University of Ngaoundere, P.O. Box 454, Ngaoundere, Cameroon. 

*Corresponding author: vboursou1@gmail.com, +237 694 597 848.

Received: 23 May 2025, Reviewed: 02 Jul 2025, Revised: 15 Jul 2025, Accepted: 27 Jul 2025, Published: 01 Oct 2025 

https://doi.org/10.63342/cjbbs2025.33.021.eng

DOWNLOAD PDF HERE

ABSTRACT

Haemonchosis is among the leading nematodosis of ruminants, particularly in sheep, with important economic losses. During the last decades, several approaches using anthelminthic drugs were conducted with a continuously decreasing success. Nowadays, it is well established that Haemonchus contortus is resistant to the three classes of anthelmintics in several countries. Currently, the approaches of grazing management and the use of alternative natural compounds are also implemented to control these infections. The present study aimed to evaluate the activity of the ethanolic extract of the seeds of Cucumis melo on H. contortus. For this purpose, the seeds were extracted in a 70% ethanol solution. The obtained powder was solubilized in phosphate buffer saline (PBS) at various concentrations (0 to 3.75 mg/mL) to which the assessed stages were submitted. The activity (mortality and egg hatching inhibition) was monitored at different time points (0, 12, 18, 24, and 48 h). The extract was active on diverse stages in a concentration-dependent manner. In adult females, a 100% mortality rate was reached after 24h with an LC50 of 0.5 ±0.09 mg/mL, which was significantly weaker than the levamisole control (0.33 ±0.02 mg/mL). The effect on larval migration was similar to the conventional drug effect, with IC50 values of 1.71 ± 0.10 mg/mL and 1.74 ± 0.25 mg/mL, respectively, for extract and levamisole. On larvae, the lethal activity was very similar in the presence of either levamisole or seeds extract, with an IC50 value of 0.86 ± 0.25 mg/mL and 1.19 ± 0.25 mg/mL, respectively. A qualitative phytochemical analysis revealed that the assessed extract contains alkaloids, tannins, phenolic compounds, flavonoids, glycosides, saponins, and triterpenes. The hydro-ethanolic extract of the seeds of C. melo did not induce any sign of toxicity in mice at the dose of 2000 mg/kg. Altogether, this extract is a good source of anthelminthic chemical compounds, especially those active on larval migration and egg hatching.

Key-Words: Cucumis melo seeds, Anthelminthic, Haemonchus contortus, levamisole.

RÉSUMÉ

L’haemonchose est l’une des principales nĂ©matodoses des ruminants, notamment les moutons Ă  l’origine d’importantes pertes Ă©conomiques. Au fil des dĂ©cennies, diverses stratĂ©gies utilisant des mĂ©dicaments anthelminthiques ont Ă©tĂ© mises en Ĺ“uvre, avec un succès dĂ©croissant. Aujourd’hui, il est reconnu que Haemonchus contortus est rĂ©sistant aux trois principales classes d’anthelminthiques dans plusieurs pays. Par consĂ©quent, des approches de gestion des pâturages et l’utilisation de composĂ©s naturels alternatifs sont actuellement en dĂ©veloppement pour lutter contre ces infections. Cette Ă©tude visait Ă  Ă©valuer l’activitĂ© de l’extrait Ă©thanolique des graines de Cucumis melo contre H. contortus. Une extraction a Ă©tĂ© conduite sur des graines dans une solution d’Ă©thanol Ă  70 %. La poudre obtenue a Ă©tĂ© dissoute dans du PBS (phosphate buffer saline) Ă  diffĂ©rentes concentrations (0 Ă  3,75 mg/mL), puis soumise Ă  des tests sur diffĂ©rents stades du parasite. L’activitĂ© de l’extrait, notamment la mortalitĂ© et l’inhibition de l’Ă©closion des Ĺ“ufs, a Ă©tĂ© Ă©valuĂ©e Ă  diverses tranches horaires (0, 12, 18, 24 et 48 heures). Les rĂ©sultats montrent que l’extrait est actif selon la concentration et le stade du parasite. Chez les femelles adultes, un taux de mortalitĂ© de 100 % a Ă©tĂ© observĂ© après 24 heures avec une CL50 de 0,5 ±0,09 mg/mL, infĂ©rieur Ă  celle du lĂ©vamisole (0,33 ±0,02 mg/mL). Sur la migration larvaire, l’effet de l’extrait Ă©tait comparable Ă  celui du lĂ©vamisole, avec des valeurs IC50 de 1,71 ± 0,10 mg/mL et 1,74 ± 0,25 mg/mL respectivement. En ce qui concerne les larves, l’activitĂ© lĂ©tale Ă©tait similaire pour l’extrait et le lĂ©vamisole, avec des IC50 respectives de 0,86 ± 0,25 mg/mL et 1,19 ± 0,25 mg/mL. L’analyse phytochimique qualitative de cet extrait a rĂ©vĂ©lĂ© la prĂ©sence d’alcaloĂŻdes, de tanins et de composĂ©s phĂ©noliques, de flavonoĂŻdes, de glycosides, de saponines et de triterpènes. Aucun signe de toxicitĂ© n’a Ă©tĂ© observĂ© chez les souris Ă  la dose de 2000 mg/kg. En rĂ©sumĂ©, l’extrait hydro-Ă©thanolique des graines de C. melo constitue une source prometteuse de composĂ©s chimiques Ă  activitĂ© anthelminthique, notamment contre la migration larvaire et l’Ă©closion des Ĺ“ufs.

Mots-clés : Cucumis melo seeds, Anthelminthic, Haemonchus contortus, levamisole.

REFERENCES

Asif HM, Rehman SU, Akram M, Akhtar N, Sultana S, Rehman JU (2014). Medicinal Properties of Cucumis melo Linn. RADS Journal of Pharmacy and Pharmaceutical Sciences 2: 1–6.

Beshay EVN, Rady AA, Afifi AF, Mohamed AH (2019). Schistosomicidal, antifibrotic, and antioxidant effects of Cucurbita pepo L. seed oil and praziquantel combined treatment for Schistosoma mansoni infection in a mouse model. Journal of Helminthology 93: 286–294. https://doi.org/10.1017/S0022149X18000317

Bidie A dit P, N’Guessan BB, Yapo AF, N’Guessan J David, Djaman A Joseph (2011). Activités antioxydantes de dix plantes médicinales de la pharmacopée ivoirienne. Sciences & Nature 8: 1–11.

Coles GC, Jackson F, Pomroy WE, Prichard RK, von Samson-Himmelstjerna G, Silvestre A, Taylor MA, Vercruysse J (2006). The detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 136: 167–185. https://doi.org/10.1016/j.vetpar.2005.11.019

Dedehou VFGN, Olounladé PA, Adenilé AD, Azando EVB, Alowanou GG, Daga FD, Hounzangbe-Adote (2014). Effets in vitro des feuilles de Pterocarpus erinaceus et des cosses de fruits de Parkia biglobosa sur deux stades du cycle de développement de Haemonchus contortus nématode parasite gastro-intestinal de petits ruminants. Journal of Animal and Plant Sciences (JAPS) 22: 3368–3378.

De Jesús-Martínez X, Olmedo-Juárez A, Olivares-Pérez J, Zamilpa A, Mendoza De Gives P, López-Arellano ME, Rojas-Hernández S, Villa-Mancera A, Camacho-Díaz LM, Cipriano-Salazar M (2018). In Vitro Anthelmintic Activity of Methanolic Extract from Caesalpinia coriaria J. Willd Fruits against Haemonchus contortus Eggs and Infective Larvae. BioMed Research International 2018: 1–6. https://doi.org/10.1155/2018/7375693

Fankam AG, Kuete V, Voukeng IK, Kuiate JR, Pages J-M (2011). Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes. BMC Complementary and Alternative Medicine 11: 104. https://doi.org/10.1186/1472-6882-11-104

Gaugler R, Bilgrami AL (Eds) (2004). Nematode behaviour. CABI Publishing, Wallingford, Cambridge, MA 02139, 1 pp. https://doi.org/10.1079/9780851998183.0000

Hamad RS (2023). Rutin, a Flavonoid Compound Derived from Garlic, as a Potential Immunomodulatory and Anti-Inflammatory Agent against Murine Schistosomiasis mansoni. Nutrients 15: 1206. https://doi.org/10.3390/nu15051206

Haman I, Adamou A, Nveikoueing F, Yanou Njintang N, Ndjonka D (2021). In vitro Anthelmintic Activity of Tephrosia pedicellata on Two Nematodes (Haemonchus contortus, Caenorhabditis elegans) and Its In vivo Toxicity on Rats. Journal of Diseases and Medicinal Plants 7: 87. https://doi.org/10.11648/j.jdmp.20210704.11

Hoste H, Jackson F, Athanasiadou S, Thamsborg StigM, Hoskin SO (2006). The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology 22: 253–261. https://doi.org/10.1016/j.pt.2006.04.004

Hoste H, Meza-OCampos G, Marchand S, Sotiraki S, Sarasti K, Blomstrand BM, Williams AR, Thamsborg SM, Athanasiadou S, Enemark HL, Torres Acosta JF, Mancilla-Montelongo G, Castro CS, Costa-Junior LM, Louvandini H, Sousa DM, Salminen J-P, Karonen M, Engstrom M, Charlier J, Niderkorn V, Morgan ER (2022). Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite 29: 10. https://doi.org/10.1051/parasite/2022010

Hubert J, Kerboeuf D (1992). A microlarval development assay for the detection of anthelmintic resistance in sheep nematodes. The Veterinary Record 130: 442–446. https://doi.org/10.1136/vr.130.20.442

Jorge N, da Silva AC, Veronezi CM (2022). Antioxidant and pharmacological activity of Cucumis melo var. cantaloupe. In: Mariod AA (Ed.), Multiple Biological Activities of Unconventional Seed Oils. Academic Press, 147–170. https://doi.org/10.1016/B978-0-12-824135-6.00001-5

Kalmobé J, Ndjonka D, Dikti J, Liebau E (2017). Antifilarial Activity of Cucurbita pepo ovifera var ovifera (Cucurbitaceae) on Onchocerca ochengi Adult Worms. British Journal of Pharmaceutical Research 17: 1–8. https://doi.org/10.9734/BJPR/2017/33381

Karonen M, Ahern JR, Legroux L, Suvanto J, Engström MT, Sinkkonen J, Salminen J-P, Hoste H (2020). Ellagitannins Inhibit the Exsheathment of Haemonchus contortus and Trichostrongylus colubriformis Larvae: The Efficiency Increases Together with the Molecular Size. Journal of Agricultural and Food Chemistry 68: 4176–4186. https://doi.org/10.1021/acs.jafc.9b06774

Liu B, Liu X, Liu Y, Xue S, Cai Y, Yang S, Dong M, Zhang Y, Liu H, Zhao B, Qi C, Zhu N, Ren H (2016). The Infection of Cucumber (Cucumis sativus L.) Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF) Genes, Particularly in Association with Giant Cell Formation. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01393

Machado ART, Ferreira SR, da Silva Medeiros F, Fujiwara RT, de Souza Filho JD, Pimenta LPS (2015). Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasites & Vectors 8: 113. https://doi.org/10.1186/s13071-015-0708-6

Menga HNT, Ndjonka D, Mimpfoundi R (2017). Anthelmintic Activity, Acute Toxicity of Anacardium occidentale L. (Anacardiaceae) on Onchocerca ochengi and Caenorhabditis elegans. Asian Journal of Medicine and Health 5: 1–12.

Ministère de l’élevage des pêches et des industries animales (MINEPIA) (2021). Annuaire statistique du sous-secteur de l’élevage, des pêches et des industries animales. 95 p

Morais-Costa F, Soares ACM, Bastos GA, Nunes YRF, Geraseev LC, Braga FC, Lima W dos S, Duarte ER (2015). Plants of the Cerrado naturally selected by grazing sheep may have potential for inhibiting the development of Haemonchus contortus larvae. Tropical Animal Health and Production 47: 1321–1328. https://doi.org/10.1007/s11250-015-0866-8

Morais-Costa F, Bastos GA, Soares ACM, Costa EGL, Vasconcelos VO, Oliveira NJF, Braga FC, Duarte ER, Lima WS (2016). In vitro and in vivo action of Piptadenia viridiflora (Kunth) Benth against Haemonchus contortus in sheep. Veterinary Parasitology 223: 43–49. https://doi.org/10.1016/j.vetpar.2016.04.002

Naumann HD, Armstrong SA, Lambert BD, Muir JP, Tedeschi LO, Kothmann MM (2014). Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Veterinary Parasitology 199: 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025

Ndjonka D, Agyare C, Lüersen K, Djafsia B, Achukwi D, Nukenine EN, Hensel A, Liebau E (2011). In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. Journal of Helminthology 85: 304–312. https://doi.org/10.1017/S0022149X10000635

N’Guessan K, Kadja B, Zirihi G, Traoré D, Aké-Assi L (2009). Screening phytochimique de quelques plantes médicinales ivoiriennes utilisées en pays Krobou (Agboville, Côte-d’Ivoire). Sciences & Nature 6. https://doi.org/10.4314/scinat.v6i1.48575

Nwosu RA, Suleiman MM, Makun HJ, Ameh MP, Shetshak MA, Akefe IO (2022). In vitro anthelmintic activity of Dennettia tripetala G. Baker (Annonaceae) Fruits against Haemonchus contortus. Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology 46: 220–229. https://doi.org/10.1007/s12639-021-01438-2

Pavičić A, Zajíčková M, Šadibolová M, Svobodová G, Matoušková P, Szotáková B, Langhansová L, Maršík P, Skálová L (2023). Anthelmintic activity of European fern extracts against Haemonchus contortus. Veterinary Research 54: 59. https://doi.org/10.1186/s13567-023-01192-8

Quijada J, Fryganas C, Ropiak HM, Ramsay A, Mueller-Harvey I, Hoste H (2015). Anthelmintic Activities against Haemonchus contortus or Trichostrongylus colubriformis from Small Ruminants Are Influenced by Structural Features of Condensed Tannins. Journal of Agricultural and Food Chemistry 63: 6346–6354. https://doi.org/10.1021/acs.jafc.5b00831

Saleh AS, El-Newary SA, Mohamed WA, Elgamal AM, Farah MA (2024). Pumpkin seeds (Cucurbita pepo subsp. ovifera) decoction promotes Trichinella spiralis expulsion during the intestinal phase via the “Weep and Sweep” mechanism. Scientific Reports 14: 1548. https://doi.org/10.1038/s41598-024-51616-4

Silva Soares SC, de Lima GC, Carlos Laurentiz A, Féboli A, dos Anjos LA, de Paula Carlis MS, da Silva Filardi R, da Silva de Laurentiz R (2018). In vitro anthelmintic activity of grape pomace extract against gastrointestinal nematodes of naturally infected sheep. International Journal of Veterinary Science and Medicine 6: 243–247. https://doi.org/10.1016/j.ijvsm.2018.11.005

Simoben CV, Ntie-Kang F, Akone SH, Sippl W (2018). Compounds from African Medicinal Plants with Activities Against Selected Parasitic Diseases: Schistosomiasis, Trypanosomiasis, and Leishmaniasis. Natural Products and Bioprospecting 8: 151–169. https://doi.org/10.1007/s13659-018-0165-y

Sirbu CB, Imre K, Darabus G, Suici T, Mates B, Morariu S (2020). Prevalence of gastrointestinal parasitic infections in cattle and sheep in two regions of Romania. Turkish Journal of Veterinary and Animal Sciences 44: 581–587. https://doi.org/10.3906/vet-1912-59

Tibe O, Sutherland IA, Lesperance L, Harding DRK (2013). The effect of purified condensed tannins of forage plants from Botswana on the free-living stages of gastrointestinal nematode parasites of livestock. Veterinary Parasitology 197: 160–167. https://doi.org/10.1016/j.vetpar.2013.07.004

Toklo PM, Yayi Ladekan E, Linden A, Hounzangbe-Adote S, Kouam SF, Gbenou JD (2021). Anthelmintic flavonoids and other compounds from Combretum glutinosum Perr. Ex DC (Combretaceae) leaves. Acta Crystallographica Section C Structural Chemistry 77: 505–512. https://doi.org/10.1107/s2053229621007841

Urquhart GM, Duncan JL, Dunn AM, Jenning FW (1996). Veterinary Parasitology 2nd Edition. Blackwell Science, 224–234 pp. Available from: https://www.academia.edu/43129589/Veterinary_Parasitology_G_M_Urquhart_J_Armour_J_L_Duncan_A_M_Dunn_F_W_Jenning (July 11, 2025).

Vidya R, Kalaivani K, Amudha P (2022). Therapeutic Potential of Cucumis melo (L.) Fruit Extract and Its Silver Nanoparticles Against DEN-Induced Hepatocellular Cancer in Rats. Applied Biochemistry and Biotechnology 194: 368–381. https://doi.org/10.1007/s12010-021-03765-9

Vishwakarma VK, Gupta JK, Upadhyay PK (2017). Pharmacological importance of Cucumis melo L.: An overview. Asian Journal of Pharmaceutical and Clinical Research 10: 8. https://doi.org/10.22159/ajpcr.2017.v10i3.13849

Wahid M, Saqib F, Akhtar S, Ali A, Tallei TE, Simal J (2023). Mechanistic insights of Cucumis melo L. seeds for gastrointestinal muscle spasms through calcium signaling pathway–related gene regulation networks in WGCNA and in vitro, in vivo studies. Computers in Biology and Medicine 155: 106596. https://doi.org/10.1016/j.compbiomed.2023.106596

Yadav M, Chatterji S, Gupta SK, Watal G (2014). Preliminary phytochemical screening of six medicinal plants used in traditional medicine. International Journal of Pharmacy and Pharmaceutical Sciences 6: 539–542.